MathJax Examples
Render complex math expressions using TeX or MathML syntax.
1. Examples/Usage
NOTE that the default configuration uses $ (dollar signs) to delimit TeX formulas. This may cause trouble if you have $ characters in any pages. The default configuration also lets you escape the dollar signs, however, by changing them to '\$'. This should correct any problems you might have.
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are \[x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\]
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are \[x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\]
Once the formatter is installed, you can write TeX formulas in your wiki with the following syntax (by default — all delimiters are configurable):
1.1. Inline Math
Use dollar signs:
$a^2 + b^2 = c^2$
$a^2 + b^2 = c^2$
or escaped parentheses:
\(1+2+\dots+n=\frac{n(n+1)}{2}\)
\(1+2+\dots+n=\frac{n(n+1)}{2}\)
1.2. Display Math
To display math on its own line, use double dollar signs:
$$ \frac{d}{dx}\left( \int_{0}^{x} f(u)\,du\right)=f(x) $$
$$ \frac{d}{dx}\left( \int_{0}^{x} f(u)\,du\right)=f(x) $$
or escaped square brackets:
\[ \sin A \cos B = \frac{1}{2}\left[ \sin(A-B)+\sin(A+B) \right] \]
\[ \sin A \cos B = \frac{1}{2}\left[ \sin(A-B)+\sin(A+B) \right] \]
A wide range of math environments will work as well:
\begin{align*} e^x & = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots \\ & = \sum_{n\geq 0} \frac{x^n}{n!} \end{align*}
\begin{align*} e^x & = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots \\ & = \sum_{n\geq 0} \frac{x^n}{n!} \end{align*}
Note that the math environments should not be inside the dollar sign delimiters; the environments should stand on their own with just the \begin
and \end
statements in order to be parsed correctly.
1.3. Latex
\begin{equation} a^2 + b^2 = c^2 \end{equation}
\begin{equation} a^2 + b^2 = c^2 \end{equation}
\begin{align*} \\ M_{prod}= \begin{bmatrix} m_{11},\ m_{12},...,m_{1k}\\ m_{21},\ m_{22},...,m_{2k}\\ .\\.\\ m_{j1},\ m_{j2},...,m_{jk} \end{bmatrix} \\ \\ p_{cost}=\sum_{j=1}^{n} p_jx_j \rightarrow min \quad (\text{where}\ p_j=p_j^{cap1}+p_j^{cap2}x_j)\\ z_j+\sum_{k=1}^{n}m_{jk} \cdot x_k + b_j \leq x_j + y_j \\ \sum_{k=1}^{n}m_{jk} \cdot x_k - x_j -y_j + z_j \leq -b_j \\ \sum_{j=1}^{n} \omega_j \cdot x_j \leq T(=800) \\ \sum_{j=1}^{n} c_j^{imp} y_j - \sum_{j=1}^{n} c_j^{exp}z_j \leq D(=50) \\ x_j-\sum_{k=1}^{n}m_{jk}x_k+y_j-z_j\geq b_j \end{align*}
\begin{align*} \\ M_{prod}= \begin{bmatrix} m_{11},\ m_{12},...,m_{1k}\\ m_{21},\ m_{22},...,m_{2k}\\ .\\.\\ m_{j1},\ m_{j2},...,m_{jk} \end{bmatrix} \\ \\ p_{cost}=\sum_{j=1}^{n} p_jx_j \rightarrow min \quad (\text{where}\ p_j=p_j^{cap1}+p_j^{cap2}x_j)\\ z_j+\sum_{k=1}^{n}m_{jk} \cdot x_k + b_j \leq x_j + y_j \\ \sum_{k=1}^{n}m_{jk} \cdot x_k - x_j -y_j + z_j \leq -b_j \\ \sum_{j=1}^{n} \omega_j \cdot x_j \leq T(=800) \\ \sum_{j=1}^{n} c_j^{imp} y_j - \sum_{j=1}^{n} c_j^{exp}z_j \leq D(=50) \\ x_j-\sum_{k=1}^{n}m_{jk}x_k+y_j-z_j\geq b_j \end{align*}
$$ e = mc^2 $$
$$ e = mc^2 $$
$\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-\frac{x^2}{2}}dx$
$\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-\frac{x^2}{2}}dx$